《机械原理》教学大纲

课程名称: 机械原理 课程类别(必修/选修): 必修

课程英文名称: Theoryof Machines

总学时/周学时/学分: 48/3/3 其中实验(实训、讨论等)学时: 0

先修课程: 高等数学、机械制图、理论力学

授课时间: 1-16 周周二 9-11 节 (1 班) 周四 9-11 **授课地点:** 实 5 节 (2 班)

授课地点: 实 313(1 班) 实 312(2 班)

授课对象: 2019 智能制造工程 1、2 班

开课学院: 粤台学院

任课教师姓名/职称: 蹇永良副教授

联系电话: 13712871899

答疑时间、地点与方式:线上线下

课程考核方式: 开卷() 闭卷(√) 课程论文() 其它()

使用教材: 《机械原理》第八版, 孙恒, 高等教育出版社, 2013年5月。

教学参考资料:

课程教学目标

一、知识目标:

- 1. . 掌握机构的结构分析的基本理论和方法。
- 2. 掌握常用机构的分析与设计方法。研究常用机构(如连杆机构、凸轮机构、齿轮机构等)的类型、工作原理及运动特性分析和机构设计的基本原理及方法。
 - 3. 了解机械传动系统运动方案的设计方法。

二、能力目标:

1. 学会运用常用机构的分析方法,并具有进行机械系统运动方案(创新)设计的初步能力。

三、素质目标:

- 1. 培养学生具有主动参与、积极进取、崇尚科学、探究科学的学习态度和思想意识;
- 2. 养成理论联系实际、科学严谨、认真细致、实事求是的科学态度和职业道德。

本课程与学生核心能力培养之 间的关联(授课对象为理工科专 业学生的课程填写此栏):

- ■核心能力 1. 应用数学、基础 科学和智能制造工程专业知识 能力
- ■核心能力 2. 设计与执行智能制造工程专业相关实验,以及分析与解释相关数据的能力
- ■核心能力 3. 智能制造工程领域所需技能、技术以及实用软硬件工具的能力
- ■核心能力 4. 智能制造工程系统、零部件或工艺流程的设计能力
- □核心能力 5. 项目管理、有效 沟通协调、团队合作及创新能力
- ■核心能力 6. 发掘、分析与解 决复杂智能制造工程问题的能 力
- ■核心能力 7. 认识科技发展现状与趋势,了解工程技术对环境、社会及全球的影响,并培养持续学习的习惯与能力

□核心能力 8. 理解职业道德、 专业伦理与认知社会责任的能力

理论教学进程表

周次	教学主题	学时数	教学的重点、难点	教学方式 (线上/线 下)	教学手段	作业安排
1	绪论	3	机械原理研究对象及其基本概念、 机械原理课程的地位和作用。 重点: 研究对象、机械的基本概念	线 上 : MOOC 及 腾讯视 会议 教学	讲授	
2	机构的结构分析 1-3 节	3	机构组成和运动副的概念 重点: 掌握机构的表达方法 难点: 机构及运动副的正确表达	线 上 : MOOC 及 腾讯视频 会议直播 教学	讲授	2-11、12
3	机构的结构分析 4-7 节	3	机构运动简图的绘制,机构具有运动确定的条件、平面机构的结构分析 重点: 机械具有确定运动的条件、 掌握自由度的计算方法 难点: 虚约束的判断	线 上 : MOOC 及 腾讯视频 会议直播 教学	讲授	2-17
4	平面连杆机构	3	连杆机构及其传动特点、平面四杆机构的类型和应用、平面四杆机构的特性。 重点:四杆机构类型判断 难点:四杆机构特性的理解与运用	线 上 : MOOC 及 腾讯视频 会议直播 教学	讲授	8-7、9、 10、
5	平面连杆机构的设计	3	平面四杆机构的设计 难点: 平面机构的图解法设计	线 上 : MOOC 及 腾讯视频 会议直播 教学	讲授	8-17、18、 24
6	习题课	3	结构分析及四杆机构习题讲解	腾讯视频 会议直播	讲授	

				教学	讨论	
7	凸轮机构	3	凸轮机构的应用和分类从动件的运动规律。 重点: 凸轮的分类	线 上 : MOOC 及 腾讯视频 会议直播 教学	讲授	
8	凸轮机构分析及 反求设计	3	凸轮轮廓曲线的设计、凸轮机构基本尺寸的确定 重点: 凸轮机械基本尺寸的确定 难点: 凸轮的反求法设计	线 上 : MOOC 及 腾讯视频 会议直播 教学	讲授	9-6.7.8. 14
9	齿轮机构及其设计 第1~4节	3	齿轮机构概述、齿廓啮合基本定律 及渐开线齿形、渐开线圆柱齿轮各 部分名称和尺寸 重点: 渐开线的概念及特点、齿轮 的几何参数 难点: 齿轮啮合的特点	线 上 : MOOC 及 腾讯视频 会议直播 教学	讲授	10-23、26
10	齿轮机构及其设计 第 5~7 节齿轮机构及其设计 第 8-10 节	3	渐开线直齿圆柱齿轮机构的啮合传动、切削加工及根切、渐开线变位 齿轮简介 难点: 重合度的概念	线 上 : MOOC 及 腾讯视频 会议直播 教学	讲授	10-29 、 30、35
11	渐开线斜齿圆柱 齿轮机构、其它 齿形传动	3	渐开线斜齿圆柱齿轮机构、空间齿轮机构的类型和啮合传动特点简介 重点: 线斜齿圆柱齿轮机构 难点: 当量齿数的概念	线 上 : MOOC 及 腾讯视频 会议直播 教学	讲授	
12	齿系及其设计 第1~5节	3	定轴轮系传动比、周转轮系传动比。 重点 :轮系传动比的计算及方向判定	线 上 : MOOC 及 腾讯视频 会议直播 教学	讲授	11-11、12
13	复合轮系传动比	3	复合轮系传动比的计算 难点: 复合轮系的传动比计算	线上: MOOC及	讲授	11-19 、 21、22
14	习题课	3	齿轮及轮系的习题讲解	腾讯视频会议直播教学	讲授 讨论	
15	其他常用机构和 新型传动机构简 介机械系统方案	3	棘轮机构、槽轮机构、擒纵轮机构、 凸轮式间歇运动机构、不完全齿轮 机构、非圆齿轮机构机械工作原理	线 上 : MOOC 及 腾讯视频	讲授	

	设计简介		的拟定、执行机构的运动设计与原动机的选择、系统方案的拟定 重点:掌握各机构的运动特性、了解传动方案的拟定	会 议 直 播教学			
16	复习机动	3	复习机动				
	合计	: 48					
实践教学进程表							
周次	实验项目名称	弥 学时	重点、难点	项目类型(验 证/综合/设 计)	教学 手段		
		0					
合计:		. 0					
考核方法及标准							
考核形式			评价标准		权重		
考勤	考勤 不迟到、不早退、不旷课			20%			
作业	作业 按时按量完成,根据质量判定评分等级			20%			
期末考	· · · · · · · · · · · · · · · · · · ·	根据评分	标准评定分数	60%			

大纲编写时间: 2020.2.20

系(部)审查意见:

拟同意

系(部)主任签名:

陈禹寺

日期:年月日