《大学物理》课程教学大纲

课程名称:大学物理 课程类别(必修/选修):必修

课程英文名称: Principles of Physics

总学时/周学时/学分: 64/4/4 其中实验/实践学时: 18

先修课程: 高等数学

授课对象: 自动化系 18 级, 机械系 18 级

开课学院:粤台产业科技学院

任课教师姓名/职称: 莫文皓/副教授

答疑时间、地点与方式: 周一、二 第 3 节/课堂, 实验楼 307

课程考核方式: 开卷()闭卷(√)课程论文()其它()

使用教材:

赵近芳 王登龙 编, 《大学物理学》(第 5 版), 北京邮电大学出版社, 2014 年。

教学参考资料:

Principles of Physics, Halliday, Resnick, Jearl Walkker.

张三慧主编,《大学基础物理学》,清华大学出版社,2003年;

课程简介:大学物理课程是理工类各专业学生一门重要的通识性必修基础课;也是本科生接受工程逻辑思考能力 和实验技能训练的开端。该课程所教授的基本概念、基本理论和基本方法是构成学生科学素养的重要组成部分,是每一个高级应用型人才所必备的。

大学物理课程在为学生系统地打好必要的物理知识基础,培养学生树立科学的世界观,增强学生分析问题和解决问题的能力,培养学生科学实验能力,培养学生的探索精神、创新意识、严谨的治学态度、活跃的创新意识、理论联系实际和适应科技发展的综合应用能力等方面,具有其他课程不能替代的重要作用。

在大学物理课程的各个教学环节中,在传授知识的同时,应注重学生分析问题和解决问题能力的培养, 注重学生探索精神和创新意识的培养,努力实现学生知识、能力、素质的协调发展。

课程教学目标

- 1. 求实精神:通过大学物理课程教学,培养学生追求真理的勇气、严谨求实的科学态度和刻苦钻研的作风。
- 2. 创新意识:通过学习物理学的研究方法、物理学的发展历史以及物理学家的成长经历等,引导学生树立科学的世界观,激发学生的求知热情、探索精神、创新欲望以及敢于向旧观念挑战的精神。 3. 科学观察和思维的能力:运用物理学的基本理论和基本观点,通过观察、分析、综合、演绎、归纳、科学抽象、类比联想、实验等方法培养学生发现问题和提出问题的能力,并对所涉及问题有一定深度的理解,判断研究结果的合理性。
- 4. 分析问题、研究和解决问题的能力:根据物理问题的特征、性质以及实际情况,抓住主要矛盾,进行合理的简化,建立相应的物理模

本课程与学生核心能力培养之 间的关联(授课对象为理工科专 业学生的课程填写此栏):

回核心能力 1. 应用数学、基础科学和机械设计制造及其自动化专业知识能力;

回核心能力2. 设计与执行机械 设计制造及其自动化专业相关 实验,以及分析与解释相关数 据的能力;

□核心能力 3. 机械工程领域所需技能、技术以及实用软硬件工具的能力;

型,并用物理语言和基本教学方法进行描述,运用所学的物理理论和研究方法进行分析、研究;能够融合实验原理、设计思想、实验方法及相关的理论知识对实验结果进行分析、判断、归纳与综合,具有初步的分析与研究的能力。

5. 独立实验能力: 能够通过阅读实验教材、查询有关资料和思考 问题, 掌握实验原理及方法、做好实验前的准备; 独立完成实验内 容、分析实验结果、撰写合格的实验报告; 培养学生逐步形成自主 实验的基本能力。

□核心能力 4. 机械工程系统、零部件或工艺流程的设计能力;

☑核心能力 5. 项目管理、有效 沟通协调、团队合作及创新能力:

☑核心能力 6. 发掘、分析与解决复杂机械工程问题的能力; ☑核心能力 7. 认识科技发展现状与趋势,了解工程技术对环境、社会及全球的影响,并培养持续学习的习惯与能力;

図核心能力 8. 理解职业道德、 专业伦理与认知社会责任的能力。

周次	教学主题	教学 时长	教学的重点与难点	教学方式	作业安排				
1	绪论、矢量	4	物理绪论、矢量计算	课堂讲授 与讨论	待定				
2	矢量、质点运动 学	4	矢量计算、质点的直线运动,曲线运动	课堂讲授 与讨论	待定				
3	质点运动学、质 点动力学	4	曲线运动,相对运动,力的概念,牛顿运动定律	课堂讲授 与讨论	待定				
4	质点动力学	4	冲量, 动量定理, 动量守恒定律, 功	课堂讲授 与讨论	待定				
5	质点动力学	4	动能定理, 势能, 功能原理, 机械能守恒定律	课堂讲授 与讨论	待定				
6	刚体力学基础	4	刚体的定义,角动量,冲量矩、力矩角动量定 理,	课堂讲授 与讨论	待定				
7	刚体力学基础	4	角动量守恒定律, 刚体定轴转动, 转动惯量, 转动定律	课堂讲授 与讨论	待定				
8	刚体力学基础	4	转动动能定理,定轴转动的角动量定理、角动量守恒定律	课堂讲授 与讨论	待定				
9	期中考		期中考						
10	静电场	4	场强度,高斯定理,电场力的功,电势	课堂讲授 与讨论	待定				
11	静电场	4	场强与电势的关系;静电场中的导体,电容、 电容器	课堂讲授 与讨论	待定				

17	牛顿环测试	3	通用计数器及牛顿环原理及操作	验证	实验室 (演示+学生实操)	
17	磁滞回线测试	3	示波器、磁滞回线量测原理及操 作	验证	实验室 (演示+学生实操)	
17	霍尔效应	3	实验讲解, 霍尔效应原理及量测操作	验证	实验室 (演示+学生	
8	超声波测定	3	声速测试仪原理及量测操作	验证	实验室 (演示+学生	三实操)
8	动态杨氏模量测 定	3	杨氏模量试验原理及量测操作	验证	实验室 (演示+学生实操)	
8	刚体转动惯量的 测量	3	实验讲解,转动惯量原理及量测操作	验证	实验室 (演示+学生实操)	
周次	实验项目名称	学时	重点与难点	项目类型 (验证/综 合/设计)	教学 方式	
	,,,,,		实践教学进程表			
18	期末考 合计:	64	期末考			
		7	劈尖干涉, 牛顿环, 迈克耳逊干涉仪		与讨论	17.2
16	光的干涉 光的干涉	4	杨氏双缝干涉实验,光程与光程差,薄膜干涉		与讨论课堂讲授	待定 待定
15	稳恒磁场,光的干涉		磁场对运动电荷的作用,磁介质, 光的相干性,		课堂讲授 与讨论 课堂讲授	待定
14	稳恒磁场	4	安培环路定理, 磁场对载流导线的作	用,	课堂讲授 待定 与讨论	
13	稳恒磁场	4	电流, 电动势, 磁场, 磁场感应强度		课堂讲授 待定 与讨论	
12	静电场	4	电位移、电介质中的高斯定理; 电均	る能量,	课堂讲授 与讨论	待定

评量成绩	期中考 30%、期末考 30%	60%
学习情况	上课出席、态度表现	10%
实验	实验报告	10%

大纲编写时间: 2019/3/14

系(部)审査意见:

系(部)主任签名:日期:年月日