《概率论与数理统计》教学大纲

课程名称: 概率论与数理统计 课程类

课程类别(必修/选修):必修

课程英文名称: Probability Theory and Mathematical Statistics

总学时/周学时/学分: 56/4/3.5

其中实验/实践学时: 0

先修课程: 高等数学、线性代数

后续课程支撑: 统计学、大数据分析基础

授课时间:周一晚上 9/10/11 节

授课地点: 6202

授课对象: 20 电商

开课学院: 粤台产业科技学院

任课教师姓名/职称: 赖沛东/讲师

答疑时间、地点与方式: 周一晚上 6202 周一至周五 线上

课程考核方式: 开卷()闭卷(√)课程论文()其它()

使用教材:

概率论与数理统计(第5版), 盛骤 谢式千 潘承毅, 高等教育出版社, 2020.11

课程简介:

概率论与数理统计是高等院校理工类、经管类的重要课程之一。在考研数学中的比重大约占 22%左右。主要内容包括: 概率论的基本概念、随机变量及其概率分布、数字特征、大数定律与中心极限定理、统计量及其概率分布、参数估计和假设检验、回归分析、方差分析、马尔科夫链等内容。

课程教学目标及对毕业要求指标点的支撑: (与人才培养方案中"毕业要求指标点分解与课程支撑矩阵"相一致; 建议课程教学目标按章节来划分, 每个目标体现知识、能力和素质目标(正文中删除此段话,下同)

课程教学目标(以《化学反应工程》为例	支撑毕业要求指标点	毕业要求
目标 1:	1-5 掌握各概率论的基本概念、随机变	C1(交叉知识的运用能力): 具有运用数学、基础
理解概率论的基本概念,掌握古典概型、随机变量、概率	量及其概率分布、数字特征、大数定律	科学及计算机科学与技术相关知识的能力;

分布的计算,学委利用相关的分布解决实际问题。	与中心极限定理等内容。	
目标 2: 理解数字特征、概率分布的基本概念和求解过程,掌握概率分布的实际应用,学会利用相关的知识点分析数据的基本特征,对数据有初步的认识和了解。	6-7 能够数据进行基本的计算和描述, 并绘制图表和数据特征,根据数据的特 征进行进一步的深入分析。	C2(实验与数据解读能力): 具有计算机软件开发与数据搜寻分析解释的能力
目标 3: 理解线性回归、随机过程的基本概念和求解过程,掌握线性回归模型和随机过程的构建,学会利用相应的模型应用于数据分析、解决电商问题。	8-14 能够针对一个数据选择一种相关数学模型,并进行严谨推理,给出结论	C6(解决复杂问题的能力): 具有运用计算机科学与技术理论及应用知识,整合计算机应用技术、数据分析应用及跨境电商运营专业,解决相关问题和进行研发或创新的能力;
目标 4: 了解精数据分析对经济、社会发展和环境的影响,理解学 生应具备职业及伦理规范	7-2 能针对实际的数据分析、数据利用 等方面,分析研究项目对经济社会发展 产生的可能影响	C7 (持续学习与创新超越能力): 具有应对计算器 科学与技术快速变迁的能力,培养自我持续学习的 习惯与能力,了解所学专业技术对环境、社会及全 球的影响,并在学习中敢于创新超越。

理论教学进程表

(建议:每一次教学主题尽量只对应一个课程目标,减少达成度计算的复杂性,正文中删除此段话,下同)

		授课教	学时	教学内容(重点、难点、课程思政融入	教学模式			_t_ tak >1m	
周次	教学主题	, 及除教 师 	数	点)	(线上/混合式 /线下	教学方法	作业安排	支撑课 程目标	

	概率论的基本概念		3	重点:随机试验、样本空间和随机 难点:熟练理解和运用事件运算定律,特别是结合律、分配率和德摩根律的应用。 课程思政融入点:介绍概率论的发展历史和对随机事件的理解,让学生理解如何通过大量的试验寻求规律,实践是检验理论的唯一标准。	线下	课堂讲授 与小组讨论	课后作业:关于事件运算定律,特别是结合律、分配率和德摩根律的应用。	目标一
1		赖沛东	3	重点:掌握概率的基本性质和古典概型的应用 难点:掌握古典概型的应用	线下	课堂讲授 与小组讨论	课程思政作业:通过文献检索或网络资源查找,每人须完成不少于1000字关于概率论的发展。 能力培养作业:每人须完成英文献翻译1篇。	目标四
2	频率与概率、古典 概型	赖沛东	3	重点:掌握条件概率、全概率和独立性的运用。 难点:理解条件概率、全概率和独立性,并能灵活应用其解题。	线下	课堂讲授 和小组讨论	课堂讨论 :与其他 学科的相关性。	目标一

				课程思政融入点:介绍《女士品茶》里面的例子,让学生理解反复试验的作用,让学生明白实践可以提升自我认识。				
3	条件概率和独立性	赖沛东	3	重点:理解条件概率和独立性的意义,识记条件概率的基本定义和推导过程。 难点:灵活利用条件概率和独立性的应用。	线下	课堂讲授 与小组讨	课后作业 :关于条件概率和独立性的计算和应用。	目标一
4	二项分布	赖沛东	3	重点:理解随机变量的意义,识记离散型随机变量的分布形式和推导过程。 难点:灵活应用(0-1)分布、二项分布和泊松分布。	线下	课堂讲授 与小组讨 论	课后作业: 关于 (0-1)分布、二项 分布和泊松分布的 计算和应用。	目标一
5	随机变量、离散型 随机变量及其分布、随机变量的分布函数	赖沛东	3	重点:理解随机变量的意义,识记离散型随机变量的分布形式和推导过程。 难点:灵活应用(0-1)分布、二项分布和泊松分布。	线下	课堂讲授 与小组讨	课后作业:关于均匀分布、指数分布和正态分布的计算和应用。	目标一
6	连续型随机变量及 其概率密度、随机 变量的函数的分布	赖沛东	3	重点:理解随机变量函数的意义,识记连续型随机变量的分布形式和推导过程。 难点:灵活应用均匀分布、指数分布和正态分布。	线下	课堂讲授 与小组讨	课后作业:关于二 维随机变量的基本 性质、边缘分布的 性质及其应用。	目标一
7	二维随机变量及其	赖沛东	3	重点: 掌握二维随机变量的基本性质、	线下	课堂讲授		目标一

	分布、边缘分布			边缘分布的性质及其应用, 难点:掌握二维随机变量的基本性质、 边缘分布的性质及其应用。		与小组讨 论		
8	条件分布、相互独 立的随机变量,两 个随机变量的函数 分布	赖沛东	3	重点:掌握条件分布、相互独立的随机变量的关系。 难点:两个随机变量的函数分布的利用	线下	课堂讲授 与小组讨 论	课后作业:关于条件分布、相互独立的随机变量的关系及其应用。	目标一
9	数学期望和方差、 协方差及相关系数	赖沛东	3	重点:掌握数学期望和方差的计算 难点:协方差即相关系数的利用。	线下	课堂讲授 与小组讨 论		目标一
10	大数定理及中心极 限定理	赖沛东	3	重点:掌握随机样本和三大分布 难点:熟练掌握卡方分布、t 分布和 F 分布的证明、性质和应用	线下	课堂讲授 与小组讨 论		目标一
11	样本及抽样分布	赖沛东	3	重点:掌握点估计和最大似然估计的证明和推导 难点:掌握点估计和最大似然估计的利用。	线下	课堂讲授 与小组讨 论		目标一
12	参数估计	赖沛东	3	重点:掌握区间估计 难点:掌握一个样本和一个样本的区间 估计	线下	课堂讲授 与小组讨 论	课后作业 :利用区间估计进行计算和应用	目标二

13	参数估计	赖沛东	3	重点:掌握区间估计 难点:掌握两个样本和两个样本的区间 估计	线下	课堂讲授 与小组讨 论	课后作业 :利用区间估计进行计算和应用	目标二
13	假设检验	赖沛东	3	重点:了解假设检验的基本原理和相关计算的利用 难点:掌握假设检验的意义和相关公式 课程思政融入点:通过介绍假设检验, 让学生理解检验的结果不能轻易说"接 受原假设",让学生要有怀疑的精神, 只有通过反复试验(抽样),精心推导, 治学要严谨,才能得出正确的结论。	线下	课堂讲授 与小组讨	课后作业 :利用假设检验的原理进行计算和应用	目标二
14	方差分析与回归分 析	赖沛东	3	重点:了解方差分析和回归分析的基本原理 难点:掌握方差分析和回归分析的数量 关系	线下	课堂讲授 与小组讨论	课后作业: 找一个数据进行回归和方差分析,并进行解析	目标三
14	随机过程	赖沛东	3	重点:了解随机过程的基本原理 本点:掌握随机过程的数量关系和应用	线下	课堂讲授 与小组讨 论		目标三
15	马尔科夫链	赖沛东	3	重点:了解马尔科夫链的基本原理	线下	课堂讲授 与小组讨 论		目标三

15	平稳随机过程	赖沛东	3	重点:了解平稳随机过程的基本原理 难点:掌握平稳随机过程的数量关系和 应用	线下	课堂讲授 与小组讨 论		目标三
16	时间序列	赖沛东	3	重点:了解时间序列的基本原理 难点:掌握时间序列的数量关系和应用	线下	课堂讲授 与小组讨 论	课后作业: 找一个数据进行时间序列分析,并进行解析	目标三
16	复习	赖沛东	3	重点:对全书的知识点进行综合应用 难点:能够掌握上述知识点并能综合应 用	线下	课堂讲授 与小组讨 论		
	合计		56					

实践教学进程表(以《化学反应工程》为例

周次	分顶日夕粉	授课教师	学时	教学内容(重点、难点、课程思政融入点)	项目类型(验证/综合	教学	支撑课
月(人	实验项目名称	1文 除	子叫	教子内谷(<u>里</u> 点、难点、床住心以融八点)	/设计)	方式	程目标
	•••••						
	合计	1					

备注: 如果无实践环节,删除此部分,此话在正文中删除

课程考核

课程目标	支撑毕业要求指标点	评价依据及成绩比例(%)	
------	-----------	--------------	--

		作业	实验	考试	文献检索	
目标一	1-3	5	0	10	0	
目标二	2-3	•••				
目标三	4-1					
目标四	7-2	•••				
总计		30	5	60	5	100

备注: 1) 根据《东莞理工学院考试管理规定》第十二条规定: 旷课 3 次(或6课时)学生不得参加该课程的期终考核。2)各项考核标准见附件所示。

大纲编写时间: 2020年9月4日

系(部)审查意见:同意

系(部)主任签名:

日期:

三 月 日