《CAD/CAM 技术基础》课程教学大纲

 课程名称: CAD/CAM 技术基础
 课程类别(必修/选修):选修

 课程英文名称: CAD/CAM Technology
 其中实验/实践学时: 18

先修课程: 机械设计、机械原理、电工电子

授课时间: 2至19周,周五1-3节 授课地点:精雕实训基地

授课对象: 2017 精密制造 1 班

开课学院: 粤台产业科技学院

任课教师姓名/职称: 吕杰融/副教授

答疑时间、地点与方式:上课前后在上课教室答疑。还可利用网络课程平台随时留言答疑。

课程考核方式: 开卷()闭卷()课程论文()其它(√)

使用教材: 《机械 CAD/CAM 技术》 王隆太主编 机械工业出版社 2017 年第 4 版教学参考资料: : 各种版本的《机械 CAD/CAM 技术》教材、习题集及其他辅学材料

课程简介:本课程系统地讲述了机械 CAD/CAM 的基本概念、应用方法和关键技术。主要内容包括 CAD/CAM 系统工作原理、软硬件支撑环境和支撑技术、设计数据处理技术、计算机图形处理技术、 CAD/CAM 建模技术、机械 CAD/CAM 应用软件开发技术、计算机辅助工艺过程设计、数控加工编程、CAD/CAM 集成技术及其应用等。

在内容的安排上,按照设计,分析,工艺和加工 4 个机械产品主要生产环节,着重介绍计算机在工程图样的绘制、产品几何建模,CAE 分析、工艺规划和数控编程中的应用技术。

课程教学目标

1、知识与技能目标:

通过本课程的学习,使学生掌握 CAD/CAE/CAPP/CAM 的基本概念、应用方法和关键技术。包括初步掌握工程数据计算机管理和处理技术; 计算机图形处理技术; 机械 CAD/CAM 建模技术(实体建模技术,特征建模技术,装配建模技术); 初步掌握计算机辅助工程分析技术; 计算机辅助工艺设计技术以及计算机辅助数控加工编程技术等。掌握CAD/CAM 常用的应用软件的操作方法。

2、过程与方法目标:

本课程既要学习 CAD/CAM 的基本概念、基本方法,同时也要上机学习 CAD/CAM 常用的应用软件的操作方法和建模技术。因此,在学习的过程中要理论联合实际。在教学方法上要保留传统教学手段"粉笔+黑板+模型"的合理内核,同时积极开发、利用网络教学资源,形成全方位的立体化的教学手段,从而达到"减压增趣"、"提智扩能"的教学目标。

3、情感、态度与价值观发展目标:

机械 CAD/CAM 技术属学科选修课。理论性强,与各类工程技术有着密切的联系,因此处理工程问题的能力是学习该课程学生的必备素质。学生应重视本课程在素质培养中的作用,本着对自己、对社会高度负责的态度搞好课程学习。体现在学习中,具体要做到:明确学习目标,端正学

本课程与学生核心能力培养之间的关联(授课对象为理工科专业学生的课程填写此栏):

回核心能力 1. 应用数学、基础科学和机械设计制造及其自动化专业知识能力;

回核心能力 2. 设计与执行机械设计制造及其自动化专业相关实验,以及分析与解释相关数据的能力;

回核心能力 3. 机械工程 领域所需技能、技术以及 实用软硬件工具的能力; 回核心能力 4. 机械工程 系统、零部件或工艺流程 的设计能力;

□核心能力 5. 项目管理、 有效沟通协调、团队合作 及创新能力;

☑核心能力 6. 发掘、分析与解决复杂机械工程问题的能力;

习态度,培养学习兴趣,认真完成每个学习环节。同时,积极落实人才培养计划,使自己成为出色的、受社会所欢迎的工程技术人才。

回核心能力 7. 认识科技发展现状与趋势,了解工程技术对环境、社会及全球的影响,并培养持续学习的习惯与能力;

□核心能力 8. 理解职业道 德、专业伦理与认知社会 责任的能力。

理论教学进程表								
周次	教学主题	教学时长	教学的重点与难点		教学方式	作业安排		
2	机械 CAD/CAM 技术概述,工程 数据计算机管理 与处理技术	3	CAD/CAM 技术的内涵, CAD/CAM 系统作业过程和主要功能,数据管理模式,工程数表的处理,工程线图的处理		讲授	待定		
3-4	计算机图形处理 技术, 机 械 CAD/CAM 建模 技术	6	图形变换技术, 计算机辅助绘图技术, 实体建模技术, 特征建模技术, 装配建模技术, 装配建模技术		讲授	待定		
5-6	计算机辅助工程 分析,计算机辅 助工艺设计	6	有限元分析,CAPP 功能,CAPP 系统的结构组成和系统类型		讲授	待定		
7-8	计算机辅助数控 加 工 编 程 , CAD/CAM 集成 技术	6	数控加工编程技术的方法和实现,加工仿真,CAD/CAM 系统集成的关键技术		讲授	待定		
9	数控编程基础 1	3	数控编程的分类,坐标系概念与坐标判定、手动 和自动编程的流程		讲授	待定		
10	数控编程基础 2	3	数控编程与加工工艺		讲授	待定		
11	数控编程基础 3	3	数控加工程序结构、规则,基本编程指令		讲授	待定		
12- 13	复杂零件编程与加 工方法	6	宏编程实例、车、铣复合编程实例		讲授	待定		
		.						
合计: 36								
周次	实验项目名称	学时	重点与难点	项目类 型(<u>验</u>		学 式		

				证/综合/设计)	
14	Solidworks 特征 建模,绘制三维 零件图	3	草图绘制,特征建模	综合	实操
15	Solidworks 装配 建模技术,绘制 三维装配图	3	零部件的装配	综合	实操
16- 17	UG的CAM模块 后处理技术	6	UG 后处理技术	综合	实操
18- 19	CAD/CAM 综合 实验	6	CAD/CAM 软件的综合应用	综合	实操
	合计:	18			

成绩评定方法及标准							
考核形式	评价标准	权重					
到堂情况	不迟到、不早退、不旷课	10%					
工件成品	按时按量完成,根据质量判定评分等级	30%					
期末考试	根据评分标准评定分数	60%					

大纲编写时间: 2019.03.15

系(部)审查意见:

系(部)主任签名:日期:年月日