《机械制图 2》课程教学大纲

课程名称: 机械制图 2 课程类别(必修/选修):必修 课程英文名称: Mechanical Drawing 2 总学时/周学时/学分: 48/3/3 其中实验/实践学时: 48 先修课程:大学计算机基础、机械制图1

授课时间: 1至16周,周五5-7节 授课地点: 粤台产业科技学院机电楼 401

授课对象: 2018 精密制造 1 班

开课学院: 粤台产业科技学院

任课教师姓名/职称: 谭华/讲师

答疑时间、地点与方式: 课前、课间和课后: 教室: 网络、交流。

课程考核方式: 开卷()闭卷()课程论文()其它(√)上机

使用教材:《SolidWorks 2018 三维设计及应用教程》,商跃进,机械工业出版社。

教学参考资料: 1.《SolidWorks 项目教程》,鲍仲辅,机械工业出版社;

2. 各精品资源共享课网站。

课程简介:

Solidworks 是机械工程学科一门实操性较强的专业基础课程。本课程系统地介绍了计算机三维辅 助机械设计的基本原理及实现方法。通过设计案例,以 SolidWorks 及其插件为平台,详细介绍了使 用现代工具进行零件建模、虚拟装配、图纸绘制及产品展示等 CAD 技术,进行运动仿真和 FEM 分 析的 CAE 技术以及进行数控铣削和车削编程的 CAM 技术。本课程主要任务是:使学生具有计算机 辅助机械设计的基础知识,训练学生运用计算机进行机械设计的基本技能,为学生工作后适应现代化 机械生产的需要打下良好的基础。

课程教学目标

- 1. 运用基本绘图命令绘制草图,零件图,装配图, 工程图:
- 2. 培养学生空间思维和分析问题的能力;
- 3. 培养学生的创新能力,形成独立开发的意识。

本课程与学生核心能力培养之间的关联(授课 对象为理工科专业学生的课程填写此栏):

☑核心能力1. 应用数学、基础科学和机械设 计制造及其自动化专业知识能力:

□核心能力 2. 设计与执行机械设计制造及其 自动化专业相关实验,以及分析与解释相关 数据的能力:

回核心能力 3. 机械工程领域所需技能、技术 以及实用软硬件工具的能力;

□核心能力 4. 机械工程系统、零部件或工艺 流程的设计能力;

□核心能力 5. 项目管理、有效沟通协调、团 队合作及创新能力;

☑核心能力 6. 发掘、分析与解决复杂机械工 程问题的能力:

回核心能力7. 认识科技发展现状与趋势,了 解工程技术对环境、社会及全球的影响,并 培养持续学习的习惯与能力;

□核心能力 8. 理解职业道德、专业伦理与认 知社会责任的能力。

实践教学进程表							
周次	实验项目名称	学时	重点与难点	项目类型 (验证/综 合/设计)	教学方式		
1	三维设计概述	3	SolidWorks 主要功能,SolidWorks 基本操作	设计	混合式		
2	零件参数化设计	3	草图绘制、特征造型、零件设计	设计	混合式		
3	机械零件综合设 计实践	3	标准件、轴类、螺旋弹簧类、盘类、齿轮类、箱 体类零件设计	综合	混合式		
4	虚拟装配设计	3	自下而上的装配设计、单级减速器装配综合设 计、自上而下的装配设计	设计	混合式		
5	机械产品设计表 达	3	静态表达、动画表达	综合	混合式		
6	工程图创建	3	工程图模板创建、创建零件图、装配图	综合	混合式		
7	Solidworks 提高 设计效率的方法	3	设计重用、钣金、焊件	设计	混合式		
8	结构运动仿真	3	机构分析快速入门,SolidWorks Motion 基础	设计	混合式		
9	动力学仿真	3	SolidWorks Motion 应用	设计	混合式		
10	有限元分析	3	带孔板应力分析、有限元的建模策略	设计	混合式		
11	高速轴设计	3	轴的静强度与刚度分析、轴的疲劳强度分析、轴 的模态分析	设计	混合式		
12	圆柱螺旋压缩弹 簧设计	3	弹簧设计内容、弹簧刚度计算、弹簧强度计算、 弹簧稳定性分析	设计	混合式		
13	直齿圆柱齿轮强 度设计	3	齿轮啮合传动强度计算、轮轴过盈配合强度计算	设计	混合式		
14	优化设计	3	拓扑优化设计、尺寸优化设计原理、带孔板轻量 化设计、悬臂托架轻量化设计	设计	混合式		
15	耦合场分析	3	压气机连杆动应力分析、制动零件热应力分析、 动车组车体碰撞分析、动车组车体流固耦合分析	综合	混合式		
16	CAM 快速入门	3	提取加工特征、模拟刀具轨迹	设计	混合式		
17	SolidWorks CAM 数控铣削 加工范例	3	平面凸轮轮廓铣削;外形轮廓与凹槽铣削加工	设计	混合式		
18	SolidWorks CAM 数控车削 加工范例	3	车削入门-手柄车削加工;辗钢整体车轮车削加 工	设计	混合式		
合计:		54					

成绩评定方法及标准					
考核形式	评价标准	权重			
考勤	不迟到、不早退、不旷课	5%			
完成作业	次数、质量,是否按时,是否抄袭	20%			
上机实训	态度,效果	5%			
期末考核	(按评分标准定)	70%			

大纲编写时间: 2019年3月9日

系(部)审查意见:

系(部)主任签名:日期: 年 月 日